<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 3-4 (Polygon Angle-Sum Theorems)

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 3-4 (Polygon Angle-Sum Theorems)

Example	 Pg 144, Check Understanding #2 a) hexagon; convex b) octagon; concave c) 24-gon; concave
Theorem 3-9	Polygon Angle-Sum Theorem Sum of measures int \angle 's of <i>n</i> -gon is $(n-2)180$
Example	Pg 145, Check Understanding #3 a) 13 sides, $n = 13$, $(n - 2)180 = (13 - 2)180 = 11*180 = 1980$ b) $(n - 2)180 = 720$, $n - 2 = 4$, $n = 6$ so 6 sides (hexagon)
Example	Pg 147, problem #18 7 sides, $(7 - 2)180 = (5*180 = 900)$ y + 125 + 135 + 130 + 129 + 116 + 120 = y + 775 y + 775 = 900, or $y = 145$
Theorem 3-10	Polygon Exterior Angle-Sum Theorem Sum of measures of ext \angle 's of poly, 1 @ ea vertex, is 360. $m\angle 1 + m\angle 2 + m\angle 3 + + m\angle n = 360$
Special poly classifications	 a) <u>Equilateral polygon</u>: all sides congruent. b) <u>Equiangular polygon</u>: all angles congruent. c) <u>Regular polygon</u>: both equilateral and equiangular.
Example	Pg 147, problem #24 1) \angle -sum is $(18 - 2)180 = 16*180 = 2880$ 2) Regular poly so all \angle 's \cong . 3) Int \angle : 18 \angle 's so 18x = 2800 or x = 160 4) Ext \angle : 18 ext \angle 's so 18x = 360, or x = 20